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Application of Second-Order SCF Perturbation Theory to the 
Calculation of Mixed-Frequency Hyperpolarizabilities from 
Time-Dependent Hartree-Fock Theory 

David P. Santry and Thomas E. Raidy 

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada 

Second-order SCF perturbation theory is used to solve the TDHF equations of 
Dalgarno and Victor through the introduction of frequency dependent density 
matrices. Exploratory calculations are reported for the frequency dependent 
polarizability and hyper-polarizability of LiH. 
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I. Introduction 

Time-dependent Hartree-Fock (TDHF) theory [t] has found wide application in 
the calculation of atomic and molecular optical properties. The TDHF equations 
have been derived at both the uncoupled [2] and coupled levels of approximation 
[3] and solved by a variety of techniques [4-9]. In two recent papers [6, 8], the 
methods of time independent self-consistent field (SCF) perturbation theory [10] 
were applied to the solution of the perturbative TDHF equations. In the present 
paper this approach is extended to the solution of the second order TDHF equations 
with two distinct frequencies for the applied perturbation. 

2. Theory 

The solution of the TDHF equation is considered here for a molecule or atom 
interacting with a long established oscillating electric field. The field in question is 
assumed to have two components of frequency wl and w2, respectively, and con- 
sequently lead to a variety of electrical polarizations in the system. The Hamiltonian 
for the interaction, to be treated here as a perturbation, is given by 

= H~I~{AI( e~wl~ + e-'Wlt) + A2(e ~w2t + e-~W2t)}, (1) 
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where the Z's are perturbation parameters and H (1) the dipole moment operator. 
Under the LCAO method H (1) is represented by a matrix over atomic orbital basis 
functions. 

Following Dalgarno et al. [3, 5], the molecular orbitals for the perturbed molecule 
are expanded in a perturbation series. The first order changes in the coefficient 
matrix, C (~) ,  are given as solutions to the SCF matrix equation 

F(~ (~) + wS(~ (*) + F(+)C (~ = S(~ (~ + S ( ~ 1 7 6  (• (2) 

which must be solved subject to the orthonormality constraints: 

~(~176 + ~ (~ )S (~  (~ = 0, (3) 

where F (~ C (~ S (~ and E (~ in the above equations are, respectively, the zero- 
order Fock, coefficient, overlap and orbital energy matrices [11]. The above equa- 
tions may be used to calculate all first-order changes in C, C ( ~ ~-) n = 1 or 2, by the 
substitution of the appropriate w into Eq. (2). The first-order frequency-dependent 
Fock and density matrices are given by [7] 

F(,? ) = H(,~ ' + ~ ~ P(~)){(tzv/aa) - 1/2(tzaflrv)}, (4) 
er 2, 

occupled 

P~))  = 2 ~ {C(~{)C(a~:) + C~)C~~ (5) 
i 

The C (~) are calculated by expanding them in terms of the zero order, unperturbed, 
molecular orbitals [7]. The coefficients, A{~ ) in this expansion are given by [7] 

A{7 ) = ---ij~(~)/r176176 - 4 ~ _+ w), (6) 

A{p' = 0, (7) 

where 

~ ' =  d~(O)F(• ~ (8) 

Since F (~) depends on A (• through P(• Eq. (6) must be solved by iteration. The 
first order change in the density matrix is given by [7] 

ooc vRo 

= 2 E.  + (9) 
i k 

Although neither P(+) nor F (~) are symmetric, it can easily be shown from Eqs. 
(6) and (9) that 

p(+) = p(-)  (10) 

and that this relation holds for all non-Hermitian matrices treated here. 

3. Second Order 

The second and higher-order expansion parameters are ),, wl and w~. For a per- 
turbation second order in ~, there are several distinct combinations of the two 
frequencies wl and w2. Accordingly, the notation introduced for the first order 
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theory has to be elaborated slightly. If  M is one of the matrices treated in the theory, 
then its first-order changes will be represented as: 

M (~wl'~ = M (~'~ (11) 

M (~ = M (~  (12) 

Similarly, the various second-order changes are written as, for example 

MC+~l , +w2) = M (+, +~, (13) 

M ~~ = M (~ (14) 

Of all the possible second-order frequency combinations, the density matrix for 
only the ( - w l  + w2) combination will be treated in detail. Expressions for all of  
the remaining density matrices may be obtained from that for P(- ,  +~ by appropriate 
changes to the two frequencies, wl and w2. 

The second-order equations may be obtained through the extension of the Dalgano- 
Victor approach to the second-order. The frequency difference SCF equations are 
given by 

F(~ (- '+) + (w2 - wl)S(~ (-'+~ + F<-'~ (~ + FC~ c-'~ + F ( - ' + ) C  (~ 

= S(o~cc-,+~ECO) + S(~176176 +~ + S(~176176 + S(~176 (-,+~, 

(15) 

with the second-order orthonormalization constraint 

Cc+'-~Sc~ (~ + C(+'~176176 + ~c~176176 + Ec~176 = O. 

(16) 

The first-order Fock matrices are those of Eq. (4) while the second-order Fock 
matrices are given by 

r(~; "+' = ~ ~ P(~;'+'{(t~v/a,~) - 1/2(tza/crv)}, (17) 

where 
o e c  

P ( ~ '  +~ = 2 ~ {C~ (+' -~c'(o~ c'(+ ,o~c'(o, +~ c'(o)c'c-, +), (18) �9 ~,~ + "~,~ ,-'a~ + Q~  '~ + ~ , ,  "~,~ s. 

The method of solution is similar to that presented above for the first-order ex- 
pressions. The neglect of Eq. (16) would lead to the appearance of further terms in 
Eq. (15). The second-order coefficient matrices, C (-, +~ and C (+, -~ are expanded in 
terms of the known zeroth-order molecular orbitals according to 

Cc~'~)  = C(~ (19) 

Substitutions for the first- and second-order C matrices in Eqs. (15) and (16), 
followed by multiplication of (15) with ~(o~ on the left, yields 

E(~ (- '+) + (w~ - w l ) B  c-,+) + ~'(-,O~A(O,+~ + ~'(o,+)A(-,o~ + o~'~-,+~ 

= Bc-'+~E (~ + A(- '~  (~ + A(~ (-'~ + E (- '+) (20) 
and 

/~(+'-) + A(+'~176 + A(~176 + B (-'+) = 0. (21) 
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Since ~,~r'(2) = 0 for k r i, the equations for B~i -'+) and B~ +'-) may be obtained from 
(2o) as (k # i). 

a l l  
--  ~-(~7 '+) --  ~ t~mr ~'(-,o)A<o, +)~u + ~e~-(~ +)~(-~ ,o)} 

l 

B~-,+> = + &7,%{ ~ + A~~176 
( e ~ -  e~ -  wl + w2) 

(22) 

The expression for B ( +' -) may be obtained from (22) by a careful interchange of 
the signs of the two frequencies. The equivalent expression for the k = i terms is 
obtained from Eq. (21) as 

a l l  

/~{+,-) + B{-,+) X? r %(+,o)A(o,+) ~ (23) . . . .  / _ .  v ~ u  ~'zi + A} ~ -)AI~-,o)}. 
! 

After appropriate substitution for the higher-order coefficient matrices in (18), the 
second-order density matrix may be written as, 

o c c  a l l  a l l  

P~-'+' = 2 ~ ff_~ {Bk(~ "'- '~(~176 �9 .~.~.~, 
i k l 

~,~,~ j + B~7' +)p(0),-~<0)~ (24) 

This equation may be simplified by taking advantage of the relationships expressed 
in Eqs. (20)-(23). Apart from leading to computationally more efficient equations, 
these simplifications are important since they eliminate apparent singularities which 
would occur if some of the zeroth-order orbitals were degenerate [12]. 

The reduction algebra for Eq. (24) follows logically from that given for the deriva- 
tion of the corresponding second-order frequency independent density matrix given 
as an appendix to Ref. [12]. The final expression for P(- +) may be conveniently 
written as: 

a l l  a l l  

P(v" +) 2 ~ ~ fc39.(-, +)K~(o)[',(o) c)~(+, -)f~(o)[-~(o), 
i k 

o c t  v a c  

+ 2 ~ ~ {b~7 ' +)r(~176 ,~v~ + bk,<+'-)c'(~176 ,--v~ J (25) 
i k 

where, when both i and k label occupied orbitals, 

v a c  

1 ~3~7 '+> = ~ ~kz~A(-'~176 + ) ~ u  + A~~ +)A~-'~ (26) 
l 

when both i and k label vacant orbitals 

OOO 

~3(kT '+) = - - � 8 9  {A~ '~176 + ~kzA(~176 j, (27) 
l 

when i labels a vacant and k an occupied orbital 

~3~i. +) = 0, (28) 
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and when i labels an occupied and k a vacant orbital 

-~ ) ~'kzrA(~ +>~(-~.zi ,o> + A~7 ,o~o,. +>) - ~ t~'<~(~ +~--~z~ ,o~ + o~7,0~AlO,. +>) 

~ ; ' + ~  = ( 4  o> - ~I ~ + w~ - w , )  

(29) 

The ~3 contributions are distinguished from the b contributions by the fact that the 
former may be calculated non-iteratively from data generated from the first order 
calculations, whereas the latter must be calculated iteratively and are the second 
order analogue of Eqs. (6) and (9). The b, of Eq. (25), is given by 

b ~ '  +> - ~ - '  + > I ~ ~  ~Io> - - ~ ' ~  /t~ - + w2 - wl) .  (30)  

The ( - ,  +)  terms corresponding to Eqs. (25-30) may be obtained by reversing the 
signs of wl and w2 in these equations. 

Expressions for the frequency-dependent polarizability and hyperpolarizability 
may be derived by the method given in Ref. [l 3]. Accordingly, the x y  component 
of the polarizability tensor, c~(w), is given by: 

/L v 

where P,<~> is the first order density matrix, P<+> or P(->, for the applied field in the 
x direction and H <~> is the dipole matrix for the field in the y direction. Although 
expression (31) is not symmetric in the tensorial indices, it reduces to that of 
Dalgarno and Victor [3] when the Cartesian subscripts are the same or to the static 
polarizability when the frequency equals zero. 

Similarly, the hyperpolarizability is assumed by analogy with the equations of Ref. 
[13] to be given by 

,13<'"">,r : _ ~  ~ -..P(x'u>14<'>--., �9 (32) 
# y 

Here, p<x.y> is the second order change in the density matrix corresponding to ap- 
plied fields along the x and y direction of frequencies w~ and w2, respectively. This 
equation reduces to the tensorially symmetric expression for the static hyperpolar- 
izability when the frequency equals zero. 

4. Calculat ion  for ~z(w) and 13(wl, w~) for L i H  

Calculations were undertaken for LiH hydride using a bond length of 3.015 a.u. 
and a basis set as close as possible to that of Stewart et al. [5] to permit a comparison 
with their calculations. The details of the basis set, and results for various zero 
frequency calculations are as follows. The slightly modified Stewart basis was 
expanded as GTO's [14] according to the scheme: for Li, ls(5), ls'(4), 2s(5), 2s'(4), 
4s(3), 2p(4), 2p'(3), 3p(2), and 3d(1); and for H, ls(5), 2s(4), 2s'(3), 2p(4), and 
2p'(3). The modification involved omitting the 3s orbital to compensate for the 
3d<x~ +~2 + ~% orbital calculated using the POLYATOM [15] integral package. Both 
3s and 3d orbitals have the same orbital exponent ~ = 0.333. The total energy, 
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static polarizability, and static hyperpolarizability calculated for this basis are 
- 7.97595 a.u., 20.77 a.u., and - 326.1 a.u., respectively. 

The component of the frequency dependent polarizability, a~, parallel to the molec- 
ular axis was calculated for LiH by the method presented here. The results from 
these calculations, shown in Fig. 1, agree well with those reported by Stewart et al. 

Convergence was found to be particularly slow, especially near the resonance fre- 
quency, but some improvement may be possible through the incorporation of a 
predictor-corrector method. 

All previous calculations by the present method used relatively simple basis sets of 
the Slater or double zeta variety and uniformly diverged at a resonance frequency 
equal to the virtual excitation energy [9]. The present LiH calculation utilizes a 
rather more extensive basis set and, significantly, diverges at a frequency well 
removed from the lowest virtual excitation energy of the appropriate symmetry. 
This result suggests that the use of a suitable basis set is especially important for 
frequency dependent polarizability calculations. Fortunately, a recipe [16] exists for 
choosing good basis sets for static-polarizability calculations which might well prove 
applicable to the dynamic case. 

Calculations were also undertaken for the frequency dependent hyperpolarizability 
of LiH. Of all the large number of components and frequencies, o n l y / 3 ~  and 
3 hum were calculated, simply as a test of the proposed computational method. The 2 Z ~  

results from these calculations are shown in Fig. 2. The previous calculations of/3 
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Fig. 1. Parallel component of the frequency dependent polarizability of LiH. All quantities are 
in atomic units 
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Fig. 2. Parallel component of the double 
and null frequency hyperpolarizability of 
LiH. All quantities are in atomic units 
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used relatively simple Slater or double zeta basis sets and, in the case of/~(2w), were 
found to diverge at a resonant frequency of one half the appropriate virtual excita- 
tion energy. Thus, as in the case of  ~(w), the use of  a poor basis set can be expected 
to yield particularly poor excitation energies. 

5. Conclusions 

A SCF perturbative method for the solution of first and second order T D H F  equa- 
tions has been presented; higher order solutions can likely be obtained by the same 
approach. The results from the first-order calculations are found to agree well with 
those already in the literature. 

Sufficient calculations have not as yet been undertaken to provide an estimate of  the 
relative computational efficiency of the proposed method. However, the introduc- 
tion of the frequency-dependent density matrix has clear pedagogical advantages 
and provides a straightforward approach to the solution of higher order equations. 
The limited set of  calculations available to date, strongly suggest that the choice of  
basis-set is particularly important for the calculation of both the frequency depen- 
dent polarizability and hyperpolarizability. 
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